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Finding Differentially Expressed Gene

A B C
> More than two samples
Normal Tumor
—— Two-sample (independent )
Before After
] Cy 5: treatment
. |
Before /afeer —» Paired-sample
Cy 3: control
dependent ———
M4 Table exp0l expld exp03 expld expls expees exp P p-values ( p ) M Table expll expl? expd3 expld expl5 expess exp P
gene001 | 048 -0.42 0 087 082 067 035 0.067 genedd1 | -0.458  -042 087 092 067 0.35
gene002 | 038 058 108 121 042 -0.58 0.052 gene002 | 033 058 108 17 ns2 0sa
genell3 | 087 025 017 018 013 013 0013 | % ' : ' : ' '
genell4 | 157 103 122 03 018 .02 0.016 | #%
genell5 | 115 -086 121 162 112 -0.44 0.112
genel0G | 004 -012 03 016 017 0.08 0017 | % L. . .
e | 122 074 134 12 08 04| |ooes B Select a statistic which will rank the genes
enell3 | 073 -1.06 -079  -0.02 016 0.03 . : : : :
genemu 058 040 013 088 -0.09 045 -g_gég % in order of evidence for differential
genell1 | -050 042 0BG 105 0F8 0.01 0.068 .
genel12 | 086 | 029 042 045 030 053] | D00 | 5 expression, from strongest to weakest
genell3 | -016 0259 0417 028 002 -0.04 0.002 | g !
ene 036 003 003 008 023 -0.21 .
et | 072 065 054 104 084 oot| | oo8H evidence.
genel1G | -078 052 026 020 048 0.7 0.048
genell7 | 06D -085 041 045 018 02 0018 | %
genell6 | -020 -067 0413 010 038 0.05 0.538 P . | t | | t d b
enelld | 229 064 077 160 053 0.3 0.053 .
genenzu 146 | 076 | 1.08| 150 074 -0.70 0.074 ( rlmary mpor ance)' on y a. imite _num er
ceneczz | 011 013 oar| ol 0z Tow| |04 of genes can be followed up in a typical
gene.ﬁ.I 179 094 243 175| 0.3 066 0.723 biOlogical StUdy.
Microarray Data Matrix
| _ B Choose a critical-value for the ranking
: statistic above which any value is considered
» . e
gene022 | 011 013 0.4 0BD | 0.23 0.19] tO be Slgnlflcant'




Example 1: Breast Cancer Dataset

cDNA microarrays .
B Samples are taken from 20 breast cancer patients, before and after a 16 week

course of doxorubicin chemotherapy, and analyzed using microarray. There are
9216 genes.

m Paired data: there are two measurements from each patient, one before
treatment and one after treatment.

B These two measurements relate to one another, we are interested in the
difference between the two measurements (the log ratio) to determine whether a
gene has been up-regulated or down-regulated in breast cancer following that
treatment.

cancer patients
' j -—f-before Ell
16-week
doxorubicin

chemotherapy
!ﬁ

Perou CM, et al, (2000), Molecular portraits of human breast tumours. Nature 406:747-752.
http://genome-www.stanford.edu/breast _cancer/molecularportraits/
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Example 2: Leukemia Dataset o

m Bone marrow samples are taken from
B 27 patients suffering from acute lymphoblastic leukemia (ALL » s %y
A1) and
m 11 patients suffering from acute myeloid leukemia (AML - :Lliﬁgf‘ﬁj%“jgk Fi
") and analyzed using Affymetrix arrays.
m There are 7070 genes.

® Unpaired data: there are two groups of patients (ALL, AML).

m We wish to identify the genes that are up- or down-regulated in ALL
relative to AML. (i.e., to see if a gene is differentially expressed
between the two groups.)

17070 x (27+11)

Golub, T.R et al. (1999) Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286, 531--537.

oene. .«
gene | 175 084 243 175 02

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cqi




Example 3: Small Round Blue Cell Tum
(SRBCT) Dataset 5

cDNA microarrays

B There are four types of small round blue cell tumors of childhood:

Neuroblastoma (NB) (12),

Non-Hodgkin lymphoma (NHL) (8),

Rhabdomyosarcoma (RMS) (20) and

Ewing tumours (EWS) (23).

Sixty-three samples from these tumours have been hybridized to microarray.

m We want to identify genes that are differentially expressed in one or more of
these four groups.

More on SRBCT:
http://www.thedoctorsdoctor.com/diseases/small round blue cell tumor.htm

Khan J, Wei J, Ringner M, Saal L, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu
C, Peterson C and Meltzer P. Classification and diagnostic prediction of cancers using gene
expression profiling and artificial neural networks. Nature Medicine 2001, 7:673-679




Fold-Change Method - 5%

Calculate the expression ratio in control and experimental cases and to rank order the genes.
Chose a threshold, for example at least 2-fold up or down regulation, and selected those genes
whose average differential expression is greater than that threshold.

Problems: it is an arbitrary threshold.
B |n some experiments, no genes (or few gene) will meet this criterion.
m |n other experiments, thousands of genes regulated.

¢51=200

BG=100 BG=100 —
S1=300 §2=200

cS2=100

m s2 close to BG, the difference could represent noise.
m |t is more credible that a gene is regulated 2-fold with 10000, 5000 units)

m The average fold ratio does not take into account the extent to which the measurements of
differential gene expression vary between the individuals being studied.

m The average fold ratio does not take into account the number of patients in the study, which
statisticians refer to as the sample size.




Fold-Change Method (conti.) ?7

Define which genes are significantly regulated might be to choose 5%
of genes that have the largest expression ratios.

Problems:
B |t applies no measure of the extent to which a gene has a

different mean expression level in the control and experimental
groups.

B Possible that no genes in an experiment have statistically
significantly different gene expression.




Hypothesis Testing

A hypothesis test is a procedure for determining if an assertion about a characteristic of a
population is reasonable.

Example

someone says that the average price of a gallon of regular unleaded gas in
Massachusetts is $2.5.

How would you decide whether this statement is true?

m find out what every gas station in the state was charging and how many gallons
they were selling at that price.

m find out the price of gas at a small number of randomly chosen stations around
the state and compare the average price to $2.5.

m  Of course, the average price you get will probably not be exactly $2.5 due to
variability in price from one station to the next.

Suppose your average price was $2.23. Is this
three cent difference a result of chance
variability, or is the original assertion incorrect?

A hypothesis test can provide an answer.
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Terminology

m  The null hypothesis:

m HO:u =2.5. (the average price of a gallon of gas is $2.5)
B The alternative hypothesis:

m H1:u >2.5. (gas prices were actually higher)

m Hil:u<2b5.

m Hi:u =25.
B The significance level (alpha)

m Alpha is related to the degree of certainty you require in order to reject the
null hypothesis in favor of the alternative.

B Decide in advance to reject the null hypothesis if the probability of observing
your sampled result is less than the significance level.

m Alpha = 0.05: the probability of incorrectly rejecting the null hypothesis when
it is actually true is 5%.

m If you need more protection from this error, then choose a lower value
of alpha .

Example

Hy: No differential expressed.

H,: There is no difference in the mean gene expression in the group tested.
H,: The gene will have equal means across every group.

Ho! tt4= o= fta= thy= 5 (= [Ly)




The p-values 5 ?

B pis the probability of observing your data under the assumption that the null
hypothesis is true.

B pis the probability that you will be in error if you reject the null hypothesis.
B prepresents the probability of false positives (Reject H, | Hy true).

p=0.03 indicates that you would have only a 3% chance of drawing the sample
being tested if the null hypothesis was actually true.

Decision Rule

B Reject Hy if Pis less than alpha.

® P < 0.05 commonly used. (Reject Hy, the test is significant)

m The lower the p-value, the more significant the difference between the groups.

P is not the probability that the null hypothesis is true!

Power = 1 — 3.
Type | Error (alpha): calling genes as Hypothesis Testing &
differentially expressed when they are NOT R TYI(’;;&‘;“"‘" Right Decision
Type Il Error: NOT calling genes as Decision (false positive) | (TU€ Positive)
differentially expressed when they ARE Don't Reject Ho | Right Decision| 77 "™




Hypothesis Testing

cancer patients

conrol 4ERN AN,

doxorubicin

erapy ﬁ — *a‘: d‘: o ﬂ

Independent samples

Dependent samples

Comparison Two Groups More than two Groups
Hypothesis Testing Paired data Unpaired data Complex data

Parametric One sample t-test Two-sample One-Way Analysis of Variance

(variance equal) t-test (ANOVA)

Parametric Welch t-test Welch ANOVA

(variance not equal)

Non-Parametric Wilcoxon Signed-Rank Wilcoxon Rank-Sum Test | Kruskal-Wallis Test
(= SR Test (Mann-Whitney U Test)

ZARNN




Steps of Hypothesis Testing

1.

Determine the null and alternative
hypothesis, using mathematical
expressions if applicable.

Select a significance level (alpha).

Take a random sample from the population
of interest.

Calculate a test statistic from the sample
that provides information about the null
hypothesis.

Decision
| The Classical Approach |
z=-1.946 z=1.96

;
z=-2.47 z=0

Hypothesis Testing:
two-sided Z-test & p-value

Hy: m=35 null hypothesis

Hy: p=m
Hy:p#m
a = Py, (|Z] > 24/2)

Hi: n#35 alternative hypothesis [1>35; n<35)

o signifcant level : =0.05 one-sided

X —u
o/\/n

Reject Ho if |z] > Zggs

test statistic 7z =

. Sample Data; =33.6

test statistic: z =-2‘47§

P(ZQ/Q <7<

(1 — )100% Confidence Interval:

Z1—aj2) =1 —
p-value = Py, (|Z] > 20), 2o = f/;\/f%

| The PValue Approach

hypothesis.

Conclusion: since the z value of the test statistic [-2.47)
is less than the critical value of z=-1.96, we reject the null

P -value = 0.0068 times 2 (for a

significance level of 1=0.05, we

Conclusion: since the P -value of 0.0136 is less than the

2-sided test) = 0.0136 |

reject the null hypothesis




If A Result is Statistically Significant ?7

There are two possible explanations:
B The populations are identical, so there really is no difference.

m By chance, you obtained larger values in one group and smaller
values in the other.

B Finding a statistically significant result when the populations are
identical is called making a Type | error (false positives).

m If you define statistically significant to mean "P<0.05", then you'll
make a Type | error in 5% of experiments where there really is no
difference.

OR
B The populations really are different, so your conclusion is correct.
m The difference may be large enough to be scientifically interesting.

m Or it may be tiny and trivial.




Hypothesis Tests on Microarray Data

m The null hypothesis is that there is no biological effect.
|

m If the null hypothesis were true, then the variability in the data does not represent the
biological effect under study, but instead results from difference between individuals or
measurement error.

m The smaller the p-value, the less likely it is that the observed data have occurred by
chance, and the more significant the result.

m p=0.01 would mean there is a 1% chance of observing at least this level of differential gene
expression by random chance.

B We then select differentially expressed genes not on the basis of their fold ratio, but on the
basis of their p-value.

B A p-value=0.03 indicates that you would have only a
5% chance of drawing the sample being tested if the
null hypothesis was actually true.

Ho: no differential expressed.

B The test is significant
= Reject Ho ® The p-value is the smallest level of significance at
which a null hypothesis may be rejected

B False Positive
= ( Reject Ho | Ho true)
= concluding that a gene is differentially expressed when in fact it is not.




Statistical Power | ?7

m  Question: What if | do a t-test on a pair of samples and fail to reject the null hypothesis--does this
mean that there is no significant difference?

m  Answer: Maybe yes, maybe no.

m For two-sample t-test, power is the probability of rejecting the hypothesis that the
means are equal when they are in fact not equal. P(RHO | not HO)
Power is one minus the probability of Type-II error.

B The power of the test depends upon the sample size, the magnitudes of the
variances, the alpha level, and the actual difference between the two population
means.

m Usually you would only consider the power of a test when you failed to reject the
null hypothesis.

m High power is desirable (0.7 to 1.0). High power means that there is a high
probability of rejecting the null hypothesis when the null hypothesis is false.

m This is a critical measure of precision in hypothesis testing and needs to be
considered with care.




One Sample t-test - 5%

The One-Sample t-test compares the mean score of a sample to a known value. Usually,
the known value is a population mean.

Assumption: the variable is normally distributed.

One sample t-test Question
Ho :pp = po B whether a gene is differentially
Hi :p# po (two-tailed). expressed for a condition with respect to

1: population mean.
a: significant level (e.g., 0.05).
Test Statistic:

baseline expression?
®mH,: 1 =0 (log ratio)

e X —u X — o
e — |
— 7_: .'0 T —
S/\/ﬂ S/\/ﬂ MA Table exp0l  expl2 exp03 exp0d explS  expese Epr
genedD1 | -045 042 087 082 067 -0.35
> geneO02 | 039 -058 103 121 052 -0.58
X: sample mean. gened03 | 087 025 047 018 -0.13 0.13
S': sample standard deviation.
n: number of observations in the sample.
. .
e Reject Hy if [to]| > taj2n—1.
e Power = 1 — 3. =1 e t= 170 Los)
. t=-2.05 (.025] t= 4205 (.025)
° (1 o @)100% C()DfldCI]CC Interval fOI' 7% \ ................................
X —tapS/vn <pu <X +t.pS/\/n ~*'"/ — i
-2 -z -1 o 1 & 3
t
o pvalue = Py, (|T| > to), T ~ t,_1.




Two Sample t-test - 5%

Paired Sample t-test Two Sample t-test (Unpaired)
Hy : pg = po Hy @ py — poy = o

Hy : pg # po (two-tailed). Hy @ py — iy # o

itqg: mean of population differences. a: significant level (e.g., 0.05).

a: significant level (e.g., 0.05). _ o
Test Statistic: Test Statistu::_
1 1 (X =Y) — po

d — piq " d — po ty =
52 | 5
Wi 2
n m

= —\ bd — —
Sa/ /1’ Sa/v/n
fOI' h()m()gcncous VEJ_I"iELI]CCS:

Iy

d: average of sample differences.

o . df =n+m—2
Sq: standard deviation of sample difference ]
ber of bai for heterogeneous variances:
n: number of pairs. adjusted df
. R,CJC(:t HD if ‘td‘ > trx,'?,n—l- R,(Ej(i(!t H.g if |t0| = t{l‘fz,;;_,r

e Power = 1 — 3.
e (1 — a)100% Confidence Interval for jq:

(i—tQ/QS/\/‘EEH@<f]?,+t&/28/\/‘ﬁ 110 @ ! !
e pvalue = Py, (|T| >t,), T~ 1, 1. m i i
§ 108 I I
102 nl /I I\
100 [Cancer type 1 ] [Cancer type 2 ]

Male Female




Paired t-test
Applied to a gene From Breast Cancer Data

B The gene acetyl-Coenzyme A acetyltransferase 2 (ACAT2) is on the microarray used for the
breast cancer data.

B We can use a paired t-test to determine whether or not the gene is differentially expressed
following doxoruicin chemotherapy.

B The samples from before and after chemotherapy have been hybridized on separate arrays, with
a reference sample in the other channel.

m  Normalize the data.

B Because this is a reference sample experiment, we calculate the log ratio of the _
experimental sample relative to the reference sample for before and after treatment in each
patient.

m Calculate a single log ratio for each patient that represents the difference in gene expression
due to treatment by subtracting the log ratio for the gene before treatment from the log ratio
of the gene after treatment.

m Perform the t-test. t=3.22 compare to t(19).

m The ﬁ-value for a two-tailed one sample t-test is 0.0045,
which is significant at a 1% confidence level.

B Conclude: this gene has been significantly down-regulated
following chemotherapy at the 1% level.




Unpaired t-test
Applied to a Gene From Leukemia Dataset

The gene metallothionein IB is on the Affymetrix array used for the
leukemia data.

B To identify whether or not this gene is differentially expressed between the AML
and ALL patients.

B To identify genes which are up- or down-regulation in AML relative to ALL.

Steps
W the data is log transformed.
m t=-3.4177, p=0.0016

Conclude that the expression of metallothionein IB is significantly higher
in AML than in ALL at the 1% level.




Assumptions of t-test u ?7

The distribution of the data being tested is normal.
B For paired t-test, it is the distribution of the subtracted data that must be normal.
m For unpaired t-test, the distribution of both data sets must be normal.

Plots: Histogram, Density Plot, QQplot,...

Test for Normality: Jarque-Bera test, Lilliefors test, Kolmogorov-
Smirnov test.

Homogeneous: the variances of the two population are equal.
Test for equality of the two variances: Variance ratio F-test.

Note:

& If the two populations are symmetric, and if the variances are equal, then
the ttest may be used.

€ If the two populations are symmetric, and the variances are not equal,
then use the two-sample unequal variance t-test or Welch's t test.




One-Way ANOVA

Using Analysis of Variance, which can be considered to be a generalization of
the t-test, when

B compare more than two groups (e.g., drug 1, drug 2, and placebo), or

B compare groups created by more than one independent variable while
controlling for the separate influence of each of them
(e.g., Gender, type of Drug, and size of Dose).

m For two group comparisons, ANOVA will give results identical to a t-test.
m  One-way ANOVA compares groups using one parameter.

B We can test the following:
m Are all the means from more than two populations equal?

m Are all the means from more than two treatments on one population equal?
(This is equivalent to asking whether the treatments have any overall effect.)

This comparison is performed for each gene.




One-Way ANOVA (conti.)

Assumptions

B The subjects are sampled randomly.

® The groups are independent.

B The population variances are homogenous.

B The population distribution is normal in shape.

As with t tests, violation of homogeneity is particularly

a problem when we have quite different sample sizes.

Homogeneity of variance test
* Bartlett's test (1937)

» Levene's test (Levene 1960)

» O'Brien (1979)




ANOVA Table

Groups
12 i k 7 20 - X3
X1 | X2 - Xy . Xlk: T iX T Tj o x23_ 1
Xo | X - =T ™ s 5 ol
21 22 : 2 : 2% i,;l J .g X, Xas B 2
) B T .; — X22 . X
Xi1 | Xiz Xij Xik T=) T X = N A 10~ X, X4 Ao
j=1 XE‘IX X42
x : _Xnkk P . 5 | i}[ 1
S0 ORI ; Ny
™ 0 ) prerEes ;
ny X, N —1 1 L L
: j=li=1 1 2
(Xij — X) = (X5
Hy:pr=po=-+= puy
Xii = i+ €54 T nj _ k 7Tj
il B 22 (X=X =3 > [(X;;
J=1-k j=1i=1 j=1li=1
k mnj k- nj
v\ 2 v\ 2 ¥ v\ 2
D2 (X —X)?2=3 > (Xi; - X;)? {3 > (X; - X)
j=1li=1 j=1li=1 ]
ANOVA Table
SSTotaE - SSW’ithin + SSBetween
Source | SS df MS F p
Between | 555 p—1 MSp MSg/MSw < 0.05 7 — MSpetween
Within |SSw N —p MSw M Swithin
Total |SSpr N —1 Reject Hy, if Fops > Fiop—1,N—k}




Welch ANOVA

Welch’s F Test
B Use when the sample sizes are unequal.
B Use when the sample sizes are equal but small.

e _
g L w; X
j=1W;
Z?Zqu;j(jj—Xf)ﬁ
F” — k—1
2(k—2 k 1 B w; 2
1+ k<—1 .?_l(nj—]_)(l Z‘j:lw‘})
d}cf _ }fg - 1
: k 1 w; 2
32 =11 - =)
Zj:l*wj

S? RB.]'ECJE H[]? if Féb? > F{Q,k—l,df"}




Other t-Statistics

B-statistic

Lonnstedt and Speed, Statistica Sinica 2002: parametric empirical Bayes approach.

e DB-statistic is an estimate of the posterior log-odds that each gene is DE.

e DB-statistic is equivalent for the purpose of ranking genes to the penalized t-

statistic t = ﬁ where a is estimated from the mean and standard
a8 T

. - N 2
deviation of the sample variances s*. Myjlug, 04 ~ N(pg, 02)

Penalized t-statistic B, — log Pt # 01M,))
Tusher et al (2001, PNAS, SAM) ’ Py = 0|M,;)
Efron et al (2001, JASA) Lonnstedt, |. and Speed, T.P. Replicated

P M microarray data. Statistica Sinica , 12: 31-46, 2002
~ (at+s)/vn

: —— Penalized two-sample t-statistic
General Penalized t-statistic

t — MA _MB - S ——
(LOIl].’lStedt et al 2001) — S*X\/lan ti/ng’ where * = va + s2
_ b
t= s*xXSE

Robust General Penalized t-statistic

multiple regression model




Non-parametric Statistics - S

B Do not assume that the data is normally distributed.
B There are two good reasons to use non-parametric statistic.

W Microarray data is noisy:

m there are many sources of variability in a microarray experiment and outliers are
frequent.

® The distribution of intensities of many genes may not be normal.
® Non-parametric methods are robust to outliers and noisy data.

W Microarray data analysis is high throughput:

® When analysising the many thousands of genes on a microarray, we would need to
check the normality of every gene in order to ensure that t-test is appropriate.

B Those genes with outliers or which were not normally distributed would then need a
different analysis.

m |t makes more sense to apply a test that is distribution free and thus can be applied to
all genes in a single pass.




Sign Test

B Given n pairs of data, the sign
test tests the hypothesis that the
median of the differences in the
pairs is zero.

B The test statistic is the number
of positive differences.

B If the null hypothesis is true,
then the numbers of positive and
negative differences should be
approximately the same.

W In fact, the number of positive
differences will have a Binomial

distribution with parameters n and

p.

Pair Before After Sign

?

89
83
80
72
77
74
69
65
60
55
54
50
42
48
44
38
36

73
77
o8
77
70
62
67
68
44
o0
46
38
47
40
43
29
25

t+++ A4+

The Sign Test:
when n; =ns < 50
Hy:P=Q =;—
Hi:P#Q#L

T — #'.‘?+'.‘?

At o = 0.01, two-tailed test,
reject Hy if T > 14 when N =17.

(Binomial Probability)
#'.‘? +'.‘? — 14
#'.‘? " — 3

The obtained T=14 is equal

to the critical value, so we reject Hy.




Wilcoxon Signed-Rank Test (paired)

BNull hypothesis: the population median from which both samples were

drawn is the same.

B The sum of the ranks for the
"positive" (up-regulated) values is
calculated and compared against a
precomputed table to a p-value.

B Sorting the absolute values
of the differences from
smallest to largest.

B Assigning ranks to the
absolute values.

M Find the sum of the ranks of
the positive differences.

m If the null hypothesis is true, the
sum of the ranks of the positive
differences should be about the
same as the sum of the ranks of
the negative differences.

Pair Before After Diff. Rank

89
83
80
72
77
74
69
65
60
55
54
50
42
48
44
38
36

73
77
o8
77
70
62
67
68
44
o0
46
38
47
40
43
29
25

16 15.5
6 7
22
-3
7
12 13.
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The Wilcoxon signed-rank Test:
Hy @ py = pip

Hy ot # po

T =min{>", Rank, > Rank}

At o = 0.01, two-tailed test,
reject Hy if T # 23 when N = 17.

(Table)

(The zero difference is ignored when

ald — #{tzee} }

assigning ranks. N, =

T =min{}, Rank = 140, 3> Rank =13}
=13

The obtained T=13 is less than the critical
value 23, so we reject Hj.




Mann-Whitney Test

(Wilcoxon Rank-Sum Test, unpalred)

B The data from the two groups are combined and given ranks. (1 for the
smallest, 2 for the second smallest,... )

B The ranks for the larger group are summed and that number is compared
against a precomputed table to a p-value.

Group Rank The Mann-Whitney U Test:

G G Gy Go

% 16 3 11 | H:h=5h

22 10 4 17 Hy:F #F

19 8 7.5 19 U = nyng + 20t _ g

21 13 5.5 13.5 or 2 R = ¥ Rank

14 19 12 7.5 , na(nat1) B

18 11 9 155 | U =mm+=5— - R

29 7 2 2(2 At a = 0.05, two-tailed test for ny = 10,n, = 10,

17 L & 1351 reject Ho if U < 23 or U" > 77 (Table)

11 9 15.5 18

34 21 1 9.9 U: the number of times that a score from Group 1
ny =10 ny =10 Ry =69.5 R, = 104.5 is lower in rank than a score from Group 2.

U =855, U =14.5
The obtained [/ = 85.5 is less than the

critical value 77, so we reject Hy.




Kruskal-Wallis Test

m  The Kruskal Wallis test can be applied in the one
factor ANOVA case. It is a non-parametric test for
the situation where the ANOVA normality
assumptions may not apply.

B Each of the nishould be at least 5 for the
approximation to be valid.

7

Hy:py = po ==y

Hy:pi #pj for at least
one set of 7 and j

12 &R
= S 1 _3N+1
s N(N—I—I)J.Z:lnj 3(V+1)

W ~ xi_, under Hj

Reject Hyif W > CHIPPF (a, k—1),

the chi-square
percent point function

Groups Rank Data

1 2 J k 1 2 J k
Xll XlZ le Xlk Rll ng le le
XZl X22 X?j X?k Rgl R22 jo ng
Xi1 | Xio X’J‘J Xik Rii| Rio Rﬂg Ri

. Xﬂkk
Xﬂ22 . Rn22 R”'kk

X'n, 1

! X'mj RTL]_]. anj

Flzr)=P(X <z)=P(X <Ga))=a

z=G(a) =G(F(x))

The percent point function (ppf) is the inverse of the cumulative distribution function.




Parametric vs. Non-Parametric -Te?

Parametric Tests

B Assume that the data follows a certain
distribution (normal distribution).

®m  Assuming equal variances and Unequal
variances.

m  More powerful.
m Not appropriate for data with outliers.

t-test Non-parametric
Easy Easy
Powerful Robust
Widely Implemented widely implemented
N_ot appr_oprlate for data Less powerful
with outliers
Note:

Because of the loss of power, classical non-parametric

statistics have not become popular for use with microarray
data, and instead bootstrap methods trend to be preferred.

Non-Parametric Tests

When certain assumptions about the underlyin
population are questionable (e.g. normality).

Does not assume normal distribution
No variance assumption

Ranks the order of raw/normalized data
across conditions for analyses

Not affected by interpretation mode
(GeneSpring)

Decrease effects of outliers (Robust)

Not recommended if there is less than 5
replicates per group

Needs a high number of replicates
Less powerful

Bootstrap Analysis

Robust

Powerful

Requires use of specialist
packages or programming.




Volcano Plot

The Y variate is typically a
probability (in which case a -
log10 transform is used) or
less commonly a p-value.

The X variate is usually a
measure of differential
expression such as a log-
ratio.

—Log,, (p-value)

10

Log2(Fold Change)




Multciple Testing

Imagine a box with 20 marbles: 19 are blue and 1 is red.
What are the odds of randomly sampling the red marble by chance?
It is 1 out of 20.

Now let’s say that you get to sample a single marble (and put it back into the box)
20 times.

Have a much higher chance to sample the red marble.

This is exactly what happens when testing several thousand genes at the same
time:

Imagine that the red marble is a false positive gene: the chance that false
positives are going to be sampled is higher the more genes you apply a
statistical test on.

Multiplicity of Testing

X: false positive gene  [iamattn " | nadoree | ectnes by henes ooacaty
P(X>=1) 1 1/20 5%
2 1/10 10%
= 1-P(X=0) 20 1 64%
= 1-0.95"n 100 5 99.4%




Multiplicity of Testing - 5%

There is a serious consequence of performing statistical tests on many genes in
parallel, which is known as multiplicity of p-values.

Take a large supply of reference sample, label it with Cy3 and Cy5: no genes are
differentially expressed: all measured differences in expression are experimental
error.

m By the very definition of a p-value, each gene would have a 1% chance of having a p-value
of less than 0.01, and thus be significant at the 1% level.

m Because there are 10000 genes on this imaginary microarray, we would expect to find 100
significant genes at this level.

m  Similarly, we would expect to find 10 genes with a p-value less than 0.001, and 1 gene with
p-value less than 0.0001

B The p-value is the probability that a gene’s expression level are different between the two
groups due to chance.

Question:

1. How do we know that the genes that appear to be differentially expressed are
truly differentially expressed and are not just artifact introduced because we are
analyzing a large number of genes?

2. Is this gene truly differentially expressed, or could it be a false positive results?




Types of Error Control

m Multiple testing correction adjusts the p-value for each gene to keep the
overall error rate (or false positive rate) to less than or equal to the user-
specified p-value cutoff or error rate individual.

Multiple Testing

# Reject Hy # not Reject Hy
#true Ho, v U M
# true Hlj S T o
R m-R m

V : false positives = Type I errors
T : false negatives = Type II errors

Type One Errors Rates

E[V]
PCER = ——
m

PFER = E[V]
FWER = p(V=1)

vV, .
FDR =E[E] if R=0

Power = Reject the false
null hypothesis

Any-pair Power = p( S > 1)

E[S]
mj

Per-pair Power =

All-pair Power = p{ S=Mm1j)




Multiple Testing Corrections

Test Type Type of Error control Genes identified by chance
after correction
Bonferroni Family-wise error rate If error rate equals 0.05, expects
Bonferroni Step- 0.05 genes to be significant by
down chance

Westfall and Young
permutation

Benjamini and False Discovery Rate If error rate equals 0.05, 5% of
Hochberg genes considered statistically
significant (that pass the
restriction after correction) will be
identified by chance (false
positives).

most stringent
More false negatives

More false positives
least stringent

The more stringent a multiple testing correction, the less false positive genes are allowed.
The trade-off of a stringent multiple testing correction is that the rate of false negatives (genes that

are called non-significant when they are) is very high.
FWER is the overall probability of false positive in all tests.
m Very conservative
m False positives not tolerated
False discovery error rate allows a percentage of called genes to be false positives.




(1) Bonferroni ?

B The p-value of each gene is multiplied by the number of genes in the gene
list.

m |[f the corrected p-value is still below the error rate, the gene will be
significant:

m Corrected p-value= p-value * n <0.05.

m |f testing 1000 genes at a time, the highest accepted individual un-
corrected p-value is 0.00005, making the correction very stringent.

m With a Family-wise error rate of 0.05 (i.e., the probability of at least one
error in the family), the expected number of false positives will be 0.05.




(2) Bonferroni Step Down (Holm?‘??

B This correction is very similar to the Bonferroni, but a little less
stringent.

B The p-value of each gene is ranked from the smallest to the largest.

B The tth p-value is multiplied by the number of genes present in
the gene list

Corrected P-value= p-value * (n-i+ 1) < 0.05
m if the end value is less than 0.05, the gene is significant.
m [t follows that sequence until no gene is found to be significant.

Example:

Let n=1000, error rate=0.05

| Gene p-value before | Rank | Correction Is gene significant
name | correction after correction?
A 0.00002 1 0.00002 * 1000=0.02 | 0.02<0.05 =» Yes
B 0.00004 2 0.000047999=0.039 0.039<0.05 =» Yes
C 0.00009 3 0.000097998=0.0898 | 0.0898>0.05=» No




(3) Westfall and Young Permutation =

m Both Bonferroni and Holm methods are called single-step procedures, where each p-value is
corrected independently.

m The Westfall and Young permutation method takes advantage of the dependence structure
between genes, by permuting all the genes at the same time.

B The Westfall and Young permutation follows a step-down procedure similar to the Holm method,
combined with a bootstrapping method to compute the p-value distribution.

B Because of the permutations, the method is very slow.

B The Westfall and Young permutation method has a similar Family-wise error rate as the Bonferroni
and Holm corrections.

Group (B [

B P-values are calculated for each gene based on 4 _

the original data set and ranked. Permutation

B The permutation method creates a pseudo-data Group —

set by dividing the data into artificial treatment and = prvalues
control groups
B P-values for all genes are computed on the Eem; L5 0ms | 121 [ 162] 1 oul Joiia)
pseudo-data set. Tl me e e
B The successive minima of the new p-values are

retained and compared to the original ones.

B This process is repeated a large number of times,

and the proportion of resampled data sets where corrected #1p* <005

the minimum pseudo-p-value is less than the p-value: =

original p-value is the adjusted p-value. ot




(4) Benjamini and Hochberg FDRyﬁ

m This correction is the least stringent of all 4 options, and therefore tolerates more false
posiiives.

m There will be also less false negative genes.

B The correction becomes more stringent as the p-value decreases, similarly as the
Bonferroni Step-down correction.

B This method provides a good alternative to Family-wise error rate methods.
m The error rate is a proportion of the number of called genes.

| F_DR.%_OveraII proportion of false positives relative to the total number of genes declared
significant.

Corrected P-value= p-value * (n/ R)) < 0.05

Let n=1000, error rate=0.05

Gene | p-value (from Rank | Correction Is gene significant
name | largest to smallest) after correction?
A 0.1 1000 No correction 0.1>0.05=» No
B 0.06 999 1000/999*0.06 = 0.06006 > 0.05 =»
0.06006 No
C 0.04 998... || 1000/998*0.04 = 0.04008 < 0.05 =
v| 0.04008 Yes




Recommendations - 5%

m The default multiple testing correction in GeneSpring is the Benjamini and Hochberg
False Discovery Rate.

B |tis the least stringent of all corrections and provides a good balance between
discovery of statistically significant genes and limitation of false positive occurrences.

®m The Bonferroni correction is the most stringent test of all, but offers the most
conservative approach to control for false positives.

m  The Westfall and Young Permutation is the only correction accounting for genes
coregulation. However, it is very slow and is also very conservative.

®  As multiple testing corrections depend on the number of tests performed, or number
of genes tested, it is recommended to select a prefiltered gene list.

If There Are No Results with MTC

increase p-cutoff value

increase number of replicates
use less stringent or no MTC
add cross-validation experiments




Post Hoc Tests

Applicable when comparing more than 2 groups.

One-way ANOVA model

HO: (1 = (o= (o= (tg= g (= 1))
If HOis rejected for a gene, there is still no information about where differences are
observed.

How does one determine which specific differences are significant?

Test Name How it works

All means for each condition are ranked in order of magnitude; group with lowest mean
Tukey gets a ranking of 1. The pairwise differences between means, starting with the largest
mean compared to the smallest mean, are tabulated between each group pair and
divided by the standard error. This value, g, is compared to a Studentized range critical
value. If g is larger than the critical value, then the expression between that group pair is
considered to be statistically different.

This test is similar to the Tukey test, except with regard to how the critical value is

Student- determined. All g’s in Tukey's test are compared to the same critical value determined
Newman-Keuls for that experiment; whereas all ¢'s determined from SNK test are compared to a
(SNK) test: different critical value. This makes the SNK test slightly less conservative than the Tukey

test.




Student-Newman-Keuls (SNK) Test

assuming : :
B Parametric and non-parametric

equal sample sizes and
homogeneity of variance X — X, B Unequal sample sizes
L= = f j
q= B Vari -
: : ariance assumption
Group A B C D MSE P

Mean 2 3 ? 8

n

“r” 1s the number of means spanned by a given comparison.

alpha_OOI ‘ S F
SE

f;c— y =0.316| , df, alpha — studentized range statistic ¢

{ 3

l. F:d-, qor= 5.19 3. r:2, .01 =4.13
A vs D: —g—‘|899 ) < 0.01 3-2
Vs L) q—0316 . a. Avs B: q= 316:316!):‘)001
2. .*":3, qlmzd-.?g
/-2 b. BvsC: —5—1266 » < 0.01
a. AvsC: g=——=15.82,p< 0.0l ' PE AT e T sl
0.316
8-3 C. C\-";D'Q’:E:?)‘]G p>0.01
b. BvsD: q_0316_1582 p<0.01 o 316 o ‘




Tukey’s HSD Test | ?

Honestly Significant Difference (HSD)

MS Within

mg
n n

Tukey’s HSD Post-hoc test is applied in exactly the same way that the
Student-Newman-Keuls is, with the exception that r is set at k for all
comparisons.

m (kvs1,kvs2,.,kvsk-1) (k-1vs1,k-1vs2,...,k-1vsk-2)...(...2vs 1)

HSD = g

r=k, df, alpha — studentized range statistic ¢

B All alpha’s in Tukey’s test are compared to the same critical
value.

B All alpha’s in SKN test are compared to a different critical value.
M This test is more conservative (less powerful) than the Student-
Newman-Keuls.




Bootstrap Analysis

Bootstrap Sample/data

m with replacement: different individuals in the bootstrap data could have the same value from the
real data.

m without replacement: each of the real values is only used once in the bootstrap data.

Bootstrap analysis are more appropriate for microarray analysis than either t-test or
classical non-parametric tests.

B don't require that the data are normally distributed.

B robust to noise and experimental artifacts.

Under the null hypothesis; there is no difference in gene expression between the two
groups. If that were the case, then any of the measurements in the data could have been
observed in any of the individuals.

B ex: any of the AML patients could have had any of the 38 measurements associated with both the
AML and ALL patients.

The bootstrap works by constructing a large number of random data sets by resampling
from the original data, in which each individual is randomly allocated one of the
measurements from the data, which could be from either of the groups.




Bootstrap Analysis (con.)

B The bootstrap data sets look like the real data, in that they have similar
values, but are biologically nonsense because the values have been
randomized.

B Aim: the aim of the test is to compare some property of the real data
with a distribution of the same property in random data sets.

Bootstrap Analysi . -
ootstrap ki Histogram of Bootstrap f statistics
Ex: two-sample ¢ -test Bootstrap 200000 . I |
Samples ] B _
2 1(|t9] > 1) = 9750
Original Data 150000+ i=1
bootstrap p-value < 0.001

D

=023 1596
B =1000000

/\
Bk

D 100000 F ]

50000 - _I_I_L

O L 1 1 1 1 1 1 1 1 1 1
A4 03 2 1 0 017 203 4 5
! statistic

7




Steps of Bootstrap Analysis

1. We generate an empirical distribution using the t-statistics calculated
from the randomized bootstrap data.

2. The t-statistic from the real data is compared with the distribution of t-
statistics from the bootstrap data.

3. We calculate an empirical p-value by computing the proportion of
bootstrap statistics that have a more extreme value than the t-statistic
from the real data.

m if the real t-statistic is in the belly of the distribution, then it is indistinguishable from t-
statistics generated from randomized data.

m if the statistic from the real data is towards the edge of the bootstrap distribution, then
it is unlikely that the experimental result can have arisen by chance, and we would
conclude that the gene is significantly differentially expressed.




Permutation Test

The permutation test is a test where the null-hypothesis allows to reduce the inference to a
randomization problem.

The process of randomizations makes it possible to ascribe a probability distribution to the
difference in the outcome possible under Ho.

The outcome data are analyzed many times (once for each acceptable assignment that
could have been possible under Ho) and then compared with the observed result, without
dependence on additional distributional or model-based assumptions.

Perform a permutation test (general):

1.

2.

3.

4. Apply the randomization Iarinciple and look at all possible permutations, this gives the distribution of
0.

5.

Analyze the problem, choice of null-hypothesis
Choice of test statistic T
Calculate the value of the test statistic for the observed data: tobs

the test statistic T under
Calculation of p-value:

FIF >t )

pP= P(T 2 tnbs | H{}) = . .
# permutations




Permutation Test (cond.)

Coexpression of genes Data
Genel Gene2

Hy: Gene 1 and Gene 2 are not correlated.
Test statistic T: ol g

Pearson (or Spearman) correlation coefficient,
calculate t,,,

on n
Randomization: uUnder Hy it is possible to permute *
the values observed for Gene 2.
There are n! possibilities. ]
| g (11) 8?1) Random Permuiation for group labels
#T* 2t ! i ) Gene 1 Gene 2 |Group Group

p-value: p =P(T =2t,, | Hy) = ; ; 14482 1.0709 | 1 2
n! 1 2 04850 0.9324 | 1 1
élin) L%(11) 1.1331  1.2378 1 4
0.8015 0.6765 2 1
The permutation test allows determining the o oEall 2 7
statistical significance of the score for every gene. : :
1.1030 1.735 4 2
0.5148 1.0015 4 3




SAM: Ssignificance Analysis of Microarrays

a microarray experiment based
upon its change in gene

expression relative to the standard

deviation of repeated
measurements.

B SAM plot: the number of observed

genes versus the expected

number. This visualizes the outlier

genes that are most dramatically
regulated.

W False discovery rate: is the percent

of genes that are expected to be
identified by chance.

B g-value: the lowest false discovery

rate at which a gene is described
as significantly regulated.

SAM does not do any normalization!

SAM assigns a score to each gene in  g»

i =lo]x]

) g=p mEE BEG BA BRQ IR0 SR mEw S -8 X

DEHRSISRIVE XA 9- & = 3B ~ AM Plot Control
[ [ [ M [ Fr
e 1 1 2 2 1 1 2 2 3
| 2 [AFFx-Biol 100001 764252 -0.50242 -1.95964 101288 1077 -4.47036| -7 65613 755627
| 3 [AFFX-Biol 100002 351083 486575 787245 -135974 5979556 -13.4B55| -5.91633 -5.07128
| 4 [AFFX-Biol 100003 21.1568 59596949 320649 -474098 -3.70624 -12.351) -10.1714 0.63687
| 5 [AFFR-Bior 100004 18722 -238126 167677 14.1087 -89.7636 -89.1146) -10.9241 5515881

B |AFFW-Biol 100005 B4135 S3R12 1673650 81 AR08 A1 0R75 A50na1l 01 8508 R=mag
| 7 |AFF%-Biol 100006 43.2501 39.2KQ on 1.21 o _>ﬂ
g |AFFX-Biol 100007 35.7908 191 L . :
[ |aFFX-Cre 100008 G7E.819 48 Significance Analysis of Microarrays
| 10 [AFFX-Crel 100009 731025 559

11 [AFFR-Biol 100010 -45.0362 185
| 12 |AFFR-Biol 100011 9.83463 -23:2 () Trustees of Leland Stanford Junior University
| 13 [AFFx-Biol 100012 -B.23832 1.8¢
| 14 [AFF¥-Biot 100013 -76.144 -13% All Rights Reserved
| 15 [AFFX-Biot 100014  9.927 -10%
| 16 [AFFX-Biol 100015 -13.4207 -10.% .
[17 |AFF%Biol 100016 539054 6 L AL

18 [AFFR-Cre. 100017 -4.37465 -8.7C T
(19 |aFFxcre 100018 47197 B¢  ChooseResponseType | Cocred vy data
| 20 |hum_alu_ 100018 221097 856 One class Resporse
| 21 [AFF¥-Dap 100020 -20.7535 -12° Paired data
| 22 [AFFX-Dap 100021 186053 -13 e
| 23 |AFFa-Dap 100022 120019 8 Data in Log Scale?  Logged (base 2) Urlogged
| 24 [AFFx-Lys 100023 -8.29982 -0.2¢

25 |AFFX-Lys 100024 -206604 -15%
EAFFX.LYS 100025 5.48261 -14 Web Link Option ~ Clone ID ® Mame  AccessionNo. € UniGene Cluster ID
| 27 [AFFX-Phe 100026 -3.1287 -3.2¢
[ 28 |AFF®-Phe 100027 -18.0132 351 ,7%&2
29 |AFF¥-Phe 100028 142111 -20F Number of Permutations 200 = Additional Sheets Sheet3
| 30 [AFFR-Thr: 100029 -24.7369 -13.£
| 31 [AFFX-Thr: 100030  4.9279 -0.6¢

32 |AFFX-They 100031 113658 -26° ® K-Mearest Meighbors ImpLiter
EAFFX—TrpI 100032 169344 10 Imputation Engine Number of Neighbors I 10
| 34 |AFFR-Trpr 100033 248875 -39 " Row Average Imputer
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BAE
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Random Number Seed I 1234567 Generate Random Seed |

SAM: Significance Analysis of Microarrays

http://www-stat.stanford.edu/~tibs/SAM/

K | Cancel |

Tusher VG, Tibshirani R, Chu G.(2001). Significance
analysis of microarrays applied to the ionizing
radiation response. Proc Natl Acad Sci 98(9):5116-21.




SAM: Response Type

Response type Coding
Quantitative Real number eg 27.4 or -45.34
Two class (unpaired) Integer 1. 2
Multiclass Integer 1. 2. 3. ...

Paired

Integer -1, 1. -2, 2, efc.
eg - means Before treatment. + means after treatment
-1 1s paired with 1. -2 is paired with 2. etc.

Survival data

(Time, status) pair like (50,1) or (120.,0)
First number 1s survival time. second is
status (1=died. O=censored)

One class

Integer, every entry equal to 1

Time course, two class (unpaired)

(1 or 2)Time(t)[Start or End]

Time course. two class (paired)

(-1 or 1 or -2 or 2 etc)Time(t)[Start or End]

Time course. one class

1 Time(t)[ Start or End]

" Pattern discovery

eigengenek. where K 1s one of 1.2.... number of arrays

SAM Users guide and technical document




SAM: Time Series == ?7

class
u.npalred. two class time course
s N [ N [
I’ {

1TimelStart 1Tune? 1Time3End | |1TumelStart  1Tune2. 5 1Time3 4End | | 2Time0 5Start  2Timel.2  2Tmne2.75  2Tume3 . 7End

experimental unit

B Paired data time courses: class label is -1, or 1 or -2 or 2.
B One class time courses: class label is a 1.

NOTE: SAM summarizes each time course by a slope or a signed area, and
then treats the summarized data in the same way as it treats two class, one
class, or a two-class paired design.




SAM: Significance Analysis of Microarray

.
]

(R

genes

large positive difference

/
Two class, unpaired data
y; = lor?2
ri = fzz — Ti1 y
response
P - ™
yj j T d‘i
- e | Qi = d
1.2, ... n samples s; + Sg 1
N J dy
data S; o I
;s " standard deviation d,
S50 g oeq- .
exchangeability factor

Make variation in d(i) similar across
genes of all intensity levels

large negative difference

order
statistics

(4o

c~—

d(2)




SAM: Expected Test Statistics

response
Z (v = ah-ah )
L1202 B 121211 W) *
L2, ) r;
qF —
Permutati ' S
ermutation . sF+ sh y
(i N d
dh fo= /B0
df% b=12 ...B - dg)
\dé‘f’) y expected order statistics d1)




SAM Plot

Points for genes with
evidence of induction B
_ diy = dy;
Z " d(z) — d(z) > A , (Z) (3)
o) € 10{|sieni it ’
= {|signilicant positive o / K/
. o 7/
: = ] /
Y] =
- O _ .
da) & 7 upper cut-point ciit,,,(A)
d =
(1) £ o0
£
P
Vs '
= s lower cut-point cuity,, (A)
ol —
. E I # d(i) e d-(i) > A
. @ g significant negative . .
d (p) 2-107, s 0 N | Points for genes with
-10 -5 o5 10 evidence of repression
. expected relative difference dg(i)
d-(g)
Ci(l)




Estimating FDR for a Selected A

/ d E}?) \ number of falsely called genes
. fall above cut,,,(A)
s b=12,...B or
"(? fall below cuty,(A)
d *1
K (1) / False Discovery Rate (FDR) =

[median (or 90th percentile) of the number of falsely called genes]|

[the number of genes called significant] —__inthe original data

The g-value of a gene is the false discovery rate for the gene list that includes that gene and
all genes that are more significant. It 1s computed by finding the smallest value of A for

which the gene is called significant, and then 1s the FDR corresponding to A.

John D. Storey (2002) A direct approach to false discovery rates, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 64 (3), 479—498.

B The g-value gives the scientist a hypothesis testing error measure for each

observed statistic with respect to pFDR.
B The p-value accomplishes the same goal with respect to the type | error, and

the adjusted p-value with respect to FWER.




oftware: Limma, LimmaGUI,

GUT - Untitled

File Spot Types RMNA Targets Layeut MNormalization Linear Model Ewaluate TopTable Plot Halp
0= =

LimmaGUI

Wielcome to LimmaGUl, a package for Linear Modeling of Microarray Data

Data Set Name

Untitled PARAMETERIZATIONS

Rand G

Background Correction

Spot Quality Weighting
and A

Layout

Parameterizations

Tilapia - Statistical Microarray Analysis using LimmaGUI

Targets

Spot Types

Layout

Background Correction

Spot Quality Weighting

Raw M A Plots

Raw Print-Tip Group Loess M A Plots
M Box Plot for each Slide

Spot Types Included In Linear Model
Normalization Used In Linear Model
Design Matrix

Complete Tables of Genes Ranked in order of Evidence for Differential Expression
M A Plots (with fitted M values)

Limma: Linear Models for Microarray Data
http://bioinf.wehi.edu.au/limma/

LimmaGUI: a menu driven interface of Limma
http://bioinf.wehi.edu.au/limmaGUI

u Smyth, G. K. (2005). Limma: linear models for microarray data. In: SlideNumber Name  FileName o3 oy
Bioinformatics and Computational Biology Solutions using R and (T08040F [a05041060494 TiapiaGH gprfrestimentontrol
Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber STOTI 0770 70 T ot Peaoar
(eds.), Springer, New York, Chapter 23. (To be published in 2005) 4TOS0504 20805 080504 Tilapia.cpr  contral treatment

B Smyth, G. K. (2004). Linear models and empirical Bayes methods for PTORZ0N o012 120, TioplaGhlopr contol_fresmant

assessing differential expression in microarray experiments. Statistical Spot Types
Applications in Genetics and Molecular Biology 3, No. 1, Article 3.

SpotType ID Name Color
1 gene i i black
| 2Blank Blank * orange -

B % e




Reference

Reference for Finding Differential Expressed Genes
http://idv.sinica.edu.tw/hmwu/SMDA/DifferentialExpressedGene/index.htm

nternet E
EEE WEE WEY BNEE@ TAD BEE =
L OB A Qus Ggpegr Tpp @ BD.SC.B8 0
HED) [] hitp fhwew sinica edu tvi ™ rmmw/CourseSMDAfindex him v % &
=
= : I WelcomaTo Hank's Homepaga!
1 'Probeset Gene Name Array 1 Signal @
2 103941_at alpha-spectin 1, erythroid 33.7625
3 1104432_at apiysia ras-related homolog N (Rhon) 127.736 Home | Experience | Research | Publication | Course | Talks | Saftwars | Links | Updated 2007/03/06
[ 4 [104137_at ATP-binding cassette, sub-family A (ABC1), member 2 109522
| 5 |98468_at baculoviral IAP repeal-cortaining 5 128.96 Talks >> Statistical Microarray Data Analys
6 93243_at  bone morphogenetic protein 7 174.85
7 195061_at  breast carcinoma amplified sequence 2 48
| 8 102632_at calmodulin binding protein 1 69,888

[2006/04/12] 2. Finding Differential Expressed Genes
[Gene Filtering, Missing Values Imputation] [Finding Differential Exprassed Genes]

EIrEE AR BT, Course: LWEHL

'ﬁ :.—_- g% [2007/03/29] 1. Data Preprocessing for cONA Microarray and Affymetrix GeneChip Data
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