授課科目名稱:高維度資料分析 High Dimensional Data Analysis [106學年度(上): 2017.09~2018.01]

授課教師: 吳漢銘 (臺北大學 統計系 副教授), 研究室: 商館大樓七樓 7F12室 分機: 66773。

Office Hour (待公告)E-mail: hmwu@gm.ntpu.edu.tw

應修系級: 統碩1/2,統計系4,巨量資料探勘學士學程。必/選修: 選修。學分數:3 學分 3小時

上課時間地點:  三/ 02~04, 資1F-10。

實習課時間:  。助教:

公告

 

教學目的: 本課程主要介紹高維度資料分析的理論、計算方法及應用。內容包括主成份分析、古典相關性分析、區別分析、群集分析、因素分析、多維尺度法、獨立成份分析及高維度資料的視覺化等等。課程中會搭配R語言撰寫程式實作資料分析,希望提昇學生資料分析的實務經驗的同時,也培養學生觀察資料及提問思辨能力。

教學內容及進度(依實際教學進度隨時修正)

週次 月/日 內容

小考日期及範圍/備註

第一週 09/13

Course Introduction, Introduction to R

 
第二週 09/20

Chapter 1: Multidimensional Data

 作業(1)、作業(2)
第三週 09/27

Principal component analysis

 
第四週 10/04

Canonical correlation analysis

中秋節放假一次
第五週 10/11

Discriminant analysis
[graphics: plot3d, PCP, rgl] [PCA, HDLSS, shrinkage approach]

小考(1): R 下載考卷
第六週 10/18

Norms, proximities, features, and dualities
[CCA, regularized CCA]

 
第七週 10/25

Cluster analysis
[Linear Discriminant analysis + HDLSS]

小考(2):
第八週 11/01

R程式練習與資料分析 (I)

小考(2): PCA, CCA  [下載考卷]
第九週 11/08 期中考試
[Cluster analysis]

期中考延期

第十週 11/15

Factor analysis
(Variables selection for classification [ANOVA 26/40~29/40] [LDA: 27/108~29/108])
[Multidimensional scaling, ISOMAP]

 
第十一週 11/22

Multidimensional scaling
期中考試

 範圍: LDA, Cluster Analysis
第十二週 11/29

Towards non-Gaussianity

 
第十三週 12/06

Independent component analysis

 
第十四週 12/13

Projection pursuit

小考(3):
第十五週 12/20

Kernel and more independent component method

第十六週 12/27

Feature selection

 
第十七週 01/03

R程式練習與資料分析 (II)

 
第十八週 01/10 期末考試: 簡報

範圍:

  

教材課本: Inge Koch, 2013, Analysis of Multivariate and High-Dimensional Data, Publisher: Cambridge University Press; 1 edition (December 2, 2013)

參考資料

  • Christophe Giraud, 2015, Introduction to High-Dimensional Statistics, Publisher: Chapman and Hall/CRC (December 17, 2014)
  • Peter Bühlmann and Sara van de Geer, 2011, Statistics for high-dimensional data: methods, theory and applications. Publisher: Springer; 2011 edition (June 14, 2011)
  • Tony Cai,and Xiaotong Shen (Editors), High-dimensional Data Analysis (Frontiers of Statistics), Publisher: World Scientific Publishing Company (December 15, 2010)
  • Fatemeh Emdad, and Seyed (Reza) Zekavat, 2008, High Dimensional Data Analysis: Overview, Analysis, and Applications, Publisher: VDM Verlag (October 9, 2008)
  • Damien François, 2008, High-dimensional Data Analysis, Publisher: VDM Verlag (May 1, 2008)
     




成績考核方式:

  • 平時小考成績:30 % (共3次小考,各佔 10%分)。
  • 期中考成績:30 % 。
  • 期末考成績:40 % 。
  • 助教: 0% 。
  • 調分參考: 點名,上課表現,學習態度等等。(個人原因一概不予調分)。
     

備註 (上課相關)

  • 課堂以投影片(電腦_投影機)講授為主。上課前請先列印講義或將講義PDF存到個人USB隨身碟。
  • 缺課、曠課相關規定,依校規辦理。
  • 上課以「互相尊重」為最高原則並盡到「告知老師」的義務。
  • 上課請認真聽講並動腦思考。
  • 上課: (1) 可小聲討論。 (2) 可上廁所安靜去回。 (3) 可飲食。(但請一定要維護教室整潔)(電腦教室不可飲食) (4) 可帶筆電自行練習。
  • 上課: (1) 手機請關靜音震動,不可「玩」手機。(2) 不可看其它書籍或上與課程無關的網站(尤其是FB)。(3) 不可聊天、睡覺、打牌、抽煙等與學習本學科無關之事。
  • 四不一要: 「上課不聊天,睡覺不趴著,手機不要滑,考試不作弊,要認真。」
  • 課業上的問題,請同學互相討論後,再去問助教。 若有其它建議或問題反應,請e-mail老師FB留言
  • 上述「教學內容及進度」會依實際教學狀況修正。
  • 請隨時參閱課程網站(習題、公告、討論): http://www.hmwu.idv.tw

 

備註 (考試、成績相關)

  • 小考無特殊原因不得補考。(特殊原因請先報告老師,然後補考)。三次小考中限補考一次。
  • 考試作弊同學當次及日後之任何試卷及作業,老師全部不予批改。情節重大報校處理。
  • 對成績有疑問,請於當次成績公佈後一星期內連絡老師。
  • 出席點名為加分項目,但一學期之出席次數需達到點名次數2/3以上始得加分。