Improving Bagging Performance through Multi-algorithm Ensembles

New Frontiers in Applied Data Mining Kuo-Wei Hsu and Jaideep Srivastava

統碩一 112354008 洪芓宣

Contents

01.	Introduction
02.	Diversity in Combinantions of Heterogeneous
03.	Relationship between Diversity and Correlation in Ensembles
04.	Bagging with Multi-algorithm Ensembles
05.	Experimental Results and Findings
06.	Conclusions and Future Reserch Directions

Introduction

Bagging, bootstrap aggregating:

- better ability to handle small data sets
- less sensitivity
- parallel structrue for efficient implementations
- less accurate

Introduction

In this paper

- The use of heterogeneous classification alogorithms in ensembles
- Develop a framework that supports the use of different classification algorithms in bagging

Diversity in Combinantions of Heterogeneous

$$T-Diversity = \mathbb{E}_{S} \left[\mathbb{I} \left(\hat{y}_{i}^{(A,S_{1})} \neq \hat{y}_{i}^{(A,S_{2})} \right) \right]$$

$$= \frac{1}{|S|} \sum_{i=1}^{|S|} \mathbb{I} \left(\hat{y}_{i}^{(A,S_{1})} \neq \hat{y}_{i}^{(A,S_{2})} \right)$$

$$(1)$$

Diversity in Combinantions of Heterogeneous

$$A - Diversity = \mathbb{E}_{S'} \left[\mathbb{I} \left(\hat{y_i}^{(A_1, S)} \neq \hat{y_i}^{(A_2, S)} \right) \right]$$

$$= \frac{1}{|S'|} \sum_{i=1}^{|S'|} \mathbb{I} \left(\hat{y_i}^{(A_1, S)} \neq \hat{y_i}^{(A_2, S)} \right).$$

$$(3)$$

Diversity in Combinantions of Heterogeneous

Diversity gain:

$$\Delta Div = \mathbb{E}\left[\mathbb{I}\left(\hat{y_i}^{(A_1,S_1)} \neq \hat{y_i}^{(A_2,S_2)}\right)\right] - \mathbb{E}\left[\mathbb{I}\left(\hat{y_i}^{(A_1,S_1)} \neq \hat{y_i}^{(A_1,S_2)}\right)\right]$$
(5)

Heterogeneous

Homogeneous

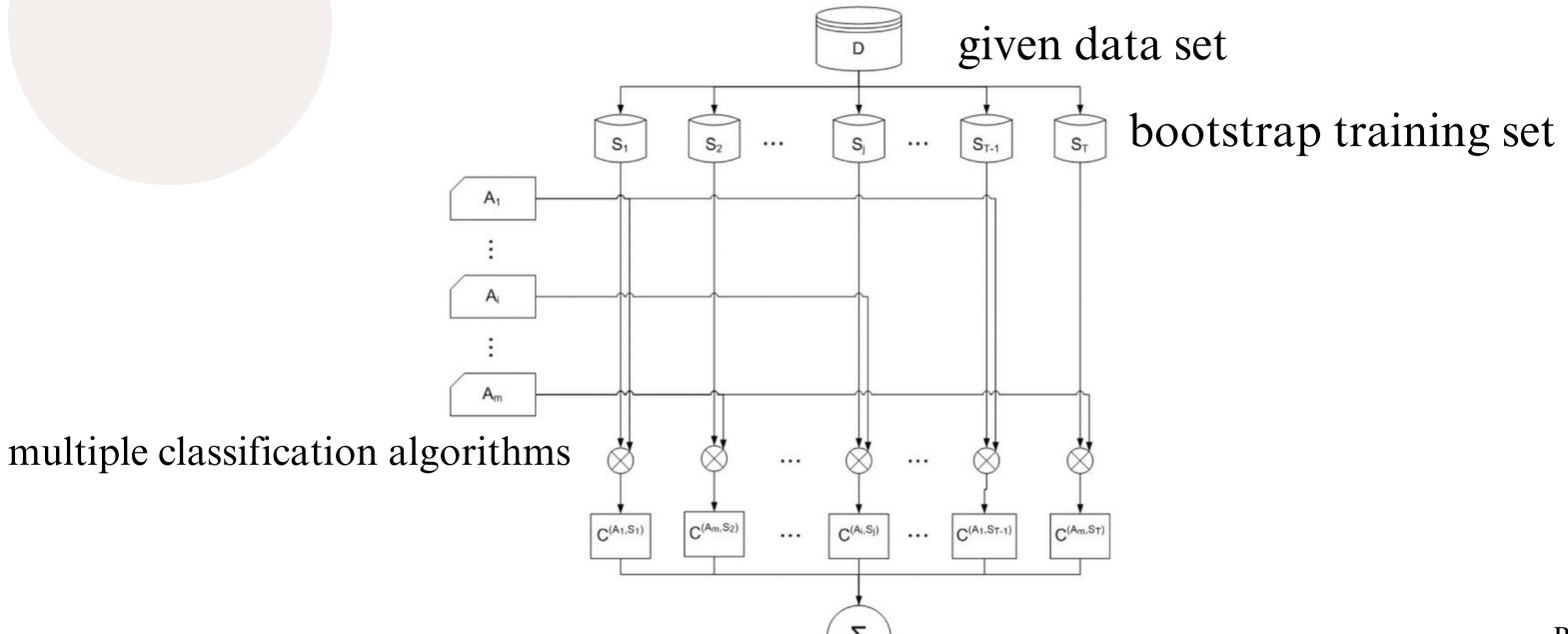
The underlying alogorithms are different.

Relationship between Diversity and Correlation in Ensembles

Non-linear relationship between diversity (DIS) and Q statistic.

$$Q \le \frac{(1 - DIS)^2 \cdot N^2 - 4 \cdot DIS \cdot N}{(1 - DIS)^2 \cdot N^2 + 4 \cdot DIS \cdot N}$$
 (7)

Higher diversity would cause reduce correlation.


$$x_c = \left(1 + \frac{2}{N}\right) - 2 \cdot \sqrt{\frac{1}{N} + \frac{1}{N^2}} \tag{8}$$

Bagging with Multi-algorithm Ensembles

• Goal:

In order to improve classification performance of bagging, we introduce another source of diversity into bagging by intoducing heterogeneity into bagging.

Bagging with Multi-algorithm Ensembles

Experimental Results and Findings

- Impact of using heterogeneous algorithms on diversity
- Simulations for diversity and correlation in ensembles
- Comparison of bagging with multi-algorithm ensembles to other ensemble methods

Conclusions and Future Reserch Directions

- Study the employment of heterogeneous classification algorithms in other machine learning problems
- Efficient implementations of this approach
- Apply this approach to emerging application domains

Thanks for listening.