Dissimilarity for functional data clustering based on smoothing parameter commutation

研究方法 (一) 期末報告

統碩一112354031 賴真萍

Contents

1. 介紹 2. 實施方法 3. 結論

う紹

- > We propose a novel and easy method to implement dissimilarity measure for functional data clustering based on smoothing splines and smoothing parameter commutation.
- \succ Our method takes into account the estimation uncertainty using smoothing parameter commutation and is not strongly affected by outliers. It can also be used for **outlier detection**.

Functional Data Clustering Methods

Functional data clustering :

- 1. dissimilarity-based methods
- 2. decomposition-based methods
- model-based methods 3.

Dissimilarity-based methods : using pointwise dissimilarities between pairs of subjects, are the most straightforward approach.

Smoothing Spline

Assume that the curve of the *i*-th subject is observed as a set of measurements $\{y_{i1}, y_{i2}, \dots, y_{ik_i}\}$ contaminated by noises at distinct finite time points $\{t_{i1}, t_{i2}, ..., t_{iK_i}\}$ in an interval $[T_L, T_U]$ according to the model

$$y_{ik} = f_i(t_{ik}) + \varepsilon_{ik}$$
, $k = 1, 2, ..., K_i$, *i*

A reasonable estimation of f_i (a smoothing spline $\hat{f}_i(\cdot; \lambda)$) is to

$$\min \frac{1}{K_{i}} (y_{i} - f_{i})^{T} (y_{i} - f_{i}) + \lambda \int_{T_{L}}^{T_{i}}$$

 $(f_i''(t))^2 dt$

Find λ

Mixed-effects model to find λ :

$$y_i = X_i \beta_i + u_i + \varepsilon_i$$

Under the **Gaussian assumption** for ε_i and u_i , the two variance components σ_u^2 and σ^2 can be determined based on the restricted maximum likelihood method (REML), so that λ is also determined.

Smoothing Parameter Commutation dissimilarity

Concept: If the 'true' f_i and f_j are similar, it is expected that \hat{f}_i and \hat{f}_j should be close, given an identical smoothing parameter λ .

The dissimilarity between subjects *i* and *j*:

$$d_{i,j} = \frac{1}{2} \left\{ \left[\int_{T_{\rm L}}^{T_{U}} (\hat{f}_{i}(t;\hat{\lambda}_{i}) - \hat{f}_{j}(t;\hat{\lambda}_{i}))^{2} dt \right]^{\frac{1}{2}} + \left[\int_{T_{\rm L}}^{T_{U}} (\hat{f}_{i}(t;\hat{\lambda}_{j}) - \hat{f}_{j}(t;\hat{\lambda}_{j}))^{2} dt \right]^{\frac{1}{2}} \right\}$$

we call it a Smoothing Parameter Commutation dissimilarity

論

- data observed at irregular time points can be handled directly. 1.
- The concept of the proposed dissimilarity measure is simple and 2. easy to implement.
- The dissimilarity also serves as a useful tool for outlier detection. 3.

Thank you

