112-2 Statistics (II)

Midterm Solution

Spring 2024

1. (A)
2. (C)
3. In the matched sample design the two production methods are tested under similar conditions (i.e., with the same workers) ; hence this design often leads to a smaller sampling error than the independent sample design. The primary reason is that in a matched sample design, variation between workers is eliminated because the same workers are used for both production methods.
4. Whenever independent simple random samples of sizes n_{1} and n_{2} are selected from two normal populations with equal variances, the sampling distribution of s_{1}^{2} / s_{2}^{2} is an \mathcal{F} distribution with $n_{1}-1$ degrees of freedom for the numerator and n_{2} - 1 degrees of freedom for the denominator; where $s_{1}^{2}\left(s_{2}^{2}\right)$ is the sample variance for the random sample of $n_{1}\left(n_{2}\right)$ items from population 1 (2).
5. (a) The interval estimation and hypothesis testing procedures are robust and can be used with relatively small sample sizes.
(b) In most applications, equal or nearly equal sample sizes such that the total sample size $\underline{n}_{1}+n_{2} \geq 20$ can be expected to provide very good results even if the populations are not normal.
(c) Larger sample sizes are recommended if the distributions of the populations are highly skewed or contain outliers.
(d) Smaller sample sizes should only be used if the analyst is satisfied that the distributions of the populations are at least approximately normal.
6. (a) Denote σ_{1}^{2} and σ_{2}^{2} as population variances of women's and men's scores respectively.

$$
\begin{aligned}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

(b) Significance Level: $\alpha=0.1$

Test Statistic:

$$
F=\frac{S_{1}^{2}}{S_{2}^{2}} \stackrel{H_{0}}{\sim} \mathcal{F}\left(n_{1}-1, n_{2}-1\right)
$$

Rejection Region:

$$
\{F \geq k\}
$$

where

$$
k=\mathcal{F}_{0.05}(20-1,30-1)=1.9581
$$

(c) $\mathcal{F}_{0.2}(19,29)=1.4042$

$$
F=\frac{2.4623^{2}}{2.2118^{2}}=1.2393
$$

The p-value is larger than 0.4 by using \mathcal{F} table, so we do not reject H_{0}. Therefore, we can not conclude that there is a difference in the variability of golf scores for male and female golfers.
7. (a)

$$
\begin{gathered}
H_{0}: \mu_{D}=0 \\
H_{l}: \mu_{D} \neq 0 \\
T=\frac{\bar{D}-\mu_{D}}{S_{D} / \sqrt{n}}=\frac{-1.05-0}{3.3162 / \sqrt{20}}=-1.42 \\
t_{0.05}(19)=1.729, \quad t_{0.1}(19)=1.328, \quad \alpha=0.1, \quad d f=19
\end{gathered}
$$

The p-value is between 0.05 and 0.1 for one-tail by using t table.
Therefore, the p-value is between 0.1 and 0.2 .

Do not reject H_{0}. There is no significant difference between the mean scores for the first and fourth rounds.
(b) $\bar{D}=-1.05$, first round scores are lower than fourth round scores.
(c) Margin of error:

$$
t_{0.05} \frac{S_{D}}{\sqrt{n}}=1.729 \frac{3.3162}{\sqrt{20}}=1.28
$$

The 90% confidence interval for μ_{D} is

$$
\bar{D} \pm t_{0.05} \frac{S_{D}}{\sqrt{n}}=-1.05 \pm 1.28
$$

Since the interval contains 0 , the difference between the population means is not significant.
8. Let $X_{1}, X_{2}, \ldots, X_{n 1}$ and $Y_{1}, Y_{2}, \ldots, Y_{n 2}$ represent two independent random samples from the respective normal distributions $\mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $\mathcal{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$

$$
\begin{gathered}
\bar{X}-\bar{Y} \sim \mathcal{N}\left(\mu_{x}-\mu_{y}, \frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}\right) \\
Z=\frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}}} \sim \mathcal{N}(0,1) \\
1-\alpha=P\left(-z_{\frac{\alpha}{2}}<\frac{\bar{X}-\bar{Y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}}}<z_{\frac{\alpha}{2}}\right) \\
=P\left((\bar{X}-\bar{Y})-z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}}<\mu_{x}-\mu_{y}<(\bar{X}-\bar{Y})+z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}}\right)
\end{gathered}
$$

so the $(1-\alpha) 100 \%$ confidence interval for $\mu_{x}-\mu_{y}$ is

$$
(\bar{X}-\bar{Y}) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{x}^{2}}{n_{1}}+\frac{\sigma_{y}^{2}}{n_{2}}}
$$

